Machine learning SVM – the usefulness of kernels

If you’ve read through how Support Vector Machines work, you probably know the linear simple SVM might not work in all cases… but how does it fail? Let’s take a look at an example I tried like to my simple example… but change it to be a larger space than just 4, and separated with a region in the middle, and the region around it (positive, negative labelled areas to learn):

Continue reading “Machine learning SVM – the usefulness of kernels”