## Slide rule enters the 21st century

Some time ago I came across this online tool in a newsletter article – this is a very cool slide-rule-emulator that will not just let you move two slides, but actually slide it for you as you run an equivalent digital calculator calculation to the right!

If you haven’t ever used a slide rule before, it works on properties of logarithms, and the principle that log(a)+log(b) = log(a*b). Now it wouldn’t be very interesting to just have two normal rulers together, as sliding and adding would just let you do problems like 5+5 = 10 or 50+50 = 100 if you scale the numbers. With logarithmic scale, the spacings are off and it allows you to do multiplication in adding the numbers.

Continue reading “Slide rule enters the 21st century”

## Microsoft Math Solver review

Years ago if you wanted a program to explain steps in mathematics, algebra or other complex math as a tutor would, you would have to buy a specialized software package built for some specific operating system (I forget the name… it may still be around?) Of course there was always open source software like Maxima to do powerful symbolic (or numeric, or graphing) math, but to know what to do one almost needs a manual, and while extremely powerful it was not helpful for beginners. I recently found a similarly useful free math solver on Microsoft’s site, https://mathsolver.microsoft.com:

Continue reading “Microsoft Math Solver review”

## Possible ABC Proof Conjecture brings Primes into Prime time news again!

Recently a possible proof of the ABC Conjecture has been in the news. Although the proof of this is hundreds of pages long and not really a fun read for most people, this reminded me of the prime spiral, “Ulam spiral” which we explored years ago at a meetup.

The interesting thing about ABC Conjecture is that no matter what examples or counterexamples you find to the inequality, it does not prove or disprove the theory as to where there are only finitely many specific triples to solve the inequality.

Ulam’s spiral is also a look into prime numbers, but from a visual perspective. Nothing to “prove” here but to see an interesting pattern within numbers. It was supposedly thought of by Stanislaw Ulam during a meeting, doodling numbers, and it was later popularized by Martin Gardner’s writings. It is a great way to have some fun learning how to use Matplotlib to draw up some interesting charts, too:

Continue reading “Possible ABC Proof Conjecture brings Primes into Prime time news again!”

## Mathematics with Pi – and earth measurement with network requests

In Ian Stewart’s book, Professor Stewart’s Casbook of Mathematical Mysteries, he writes about an easy way one might prove that the earth is not flat. His “easy” proof can be done by booking some flights and timing them… or, simply looking up actual flights from certain cities to other cities. If it is much much shorter for a certain flight from A to D while A to B to C to D in a nearly straight line is much longer, it’s effectively a proof you can go around the world without falling off…

Continue reading “Mathematics with Pi – and earth measurement with network requests”

## Happy Palindrome Day! Again and again!

As you may have heard, 02-02-2020 is a very “palindromic” day today. Especially so in that in either date formatting you use, the numbers are the same backward as forward (assuming you use 02 not “2” that is). Matt Parker was quite excited, in fact he was beside himself in his latest math video:

Continue reading “Happy Palindrome Day! Again and again!”

## Euclid’s Doodle – and writing a visualization with Matplotlib

On page 110 of Professor Stewart’s Casebook of Mathematical Mysteries, he shows a neat visual way of calculating the GCD (Greatest common denominator, aka HCF, Highest common factor. Given a box with sides of two different lengths, draw squares from the lesser side until you can draw no more. Then continue from the corner the other direction. The smallest square has edge length of the GCD!

Continue reading “Euclid’s Doodle – and writing a visualization with Matplotlib”

## Neural Networks Part 2: Learning Pi

Thousands of years ago, probably around the invention of the wheel, and before the time of Solomon, humans must have been measuring various objects… calculating some distances, and wondering,  is there a better way to measure how far around the outside of a wheel is compared to its diameter? Continue reading “Neural Networks Part 2: Learning Pi”

## The only metric guide you may need

Kilometers, Centimeters… microfarads, farads… They units are all a multiple of 10, but that doesn’t make them that much easier as you are first learning them. What is 1.09km in cm? or 1205cm in km? With a quick jotted down note card you can very quickly see what any commonly used metric unit converts to!